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Sonar Detection in an Uncertain Environment

OBJECTIVE:  To achieve rapid characterization of sonar detection performance when 
both the ocean environment and the noise field directionality are uncertain.

BACKGROUND:

• When both the signal wavefront and noise covariance matrix are known a priori, the 
classical sonar equation bounds detection performance based on analytic PDF’s.

• When both the ocean environment and noise covariance are uncertain, detection 
statistics used to predict performance in a known environment are not appropriate.

• Monte Carlo methods can be used to predict detection performance by randomizing 
over ocean parameters and noise covariance uncertainty but this is computationally 
intensive and gives little insight into the cause of performance degradation. 

• In this project, recent analytic results for the performance of Bayesian and adaptive 
CFAR detectors have been applied to achieve rapid sonar performance prediction 
in an uncertain ocean environment.
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Detection Performance Characterization

• Detection performance is characterized by the receiver operating characteristic (ROC) as 
a function of output SNR, time-bandwidth product, noise training data, and degree of 
signal wavefront uncertainty.

Example PD vs. SNR for PFA=0.1
• The sonar equation summarizes the ROC as 

the output SNR (i.e. detection threshold, 
DT) needed to achieve a specific probability 
of detection (PD) and false alarm (PFA).

• A more complete description is given by PD 
vs. SNR for fixed PFA which, in principle, 
can be mapped to PD vs. range and bearing.

• Accurate performance prediction starts with 
using the PD vs. SNR curves appropriate 
when the ocean environment is uncertain. 

What are the right curves when
the signal wavefront and

noise covariance are uncertain?



4

Adaptive CFAR Detection in an Uncertain Ocean

• In an uncertain waveguide, the M-sensor passive detection problem is given by:

• We use                                   to define a reduced-dimensional signal subspace 
whose rank p increases with environmental uncertainty.

• Adaptive detection assumes a set of i.i.d “training vectors” are available to 
estimate the unknown Gaussian noise covariance,

• For adaptive detection in an uncertain ocean, the CFAR generalized likelihood 
ratio test (GLRT) is given by:
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Analytic Probability of Detection vs. Output SNR

• If the signal wavefront and noise covariance are known exactly, the likelihood 
ratio test (LRT) detection statistic is non-central Chi-square distributed with PD:

• Setting the level      to achieve a specified PFA, this equation can be numerically 
solved to find the                                     associated with a specified PD.

• For an uncertain signal wavefront and noise covariance matrix, the statistics of 
the optimal adaptive CFAR GLRT have been derived by (Kraut et.al. 2001) with:

• Now PD also depends on the ocean uncertainty through the signal subspace 
dimension, p, the number of training snapshots available to estimate the noise 
field, K, and the number of sensors in the array, M.
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Horizontal Array Data from SWELLEX-96 Event S5

• The SWELLEX-96 dataset (courtesy MPL/SIO) was used to validate analytic PDF’s and 
detection performance prediction. 

• Narrowband data from the M=27 sensor,  240-meter long, non-uniformly spaced 
horizontal line array North was compared with detection performance predictions for the 
S5 event. Bearing-time record for 109 Hz signal (right) and noise frequencies (left).

Noise Frequencies BTRSource Ship Track Tonal at 109 Hz

GPS Track GPS Track
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Detection Statistics Over Entire S5 Event Track  

• Comparison of analytic PDF under H0 (noise only) and H1 (signal+noise) versus 
SWELLEX-96 data at 136 Hz for p=4 and K=300 (right figures) using estimated 
distribution of SNR’s (left figure) over entire 50 minute track.

• Note good agreement between observed and predicted PDF’s for this level of signal 
wavefront uncertainty.

S5 Event Data

S5 Event Data

Theory

Theory 

PDF of Detection Statistics vs. Theory over Track
Estimated PDF of S5 SNR over Track at 136 Hz
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Event S5 Detection with Signal Wavefront Uncertainty

• Probability of detection versus SNR for the adaptive GLRT detector for real S5 M=27 
HLA North event data versus analytic prediction with increasing signal wavefront 
uncertainty (i.e. subspace rank p).  Snapshot support K=300 (left) and K=32 (right). 

• Good agreement achieved between theory and data for uncertain wavefront (p=4) model 
(red curves).  Note mismatch for p=1 prediction versus real data when plane-wave 
beamforming assumed which may represent prediction error of current practice.

SNR (dB)

PD vs. SNR for K=32 over 4 tones

SNR (dB)

PD vs. SNR for K=300 over 4 tones

Data

TheoryPD PD
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Event S5 Detection with Limited Noise Training Data

• Probability of detection versus SNR for the adaptive GLRT detector for real S5 M=27 
HLA North event data versus analytic prediction with decreasing training data (i.e. 
snapshots K).  Signal wavefront uncertaint: p=4 (left) and plane-wave p=1 (right). 

• Good agreement achieved between theory and data for uncertain wavefront (p=4) model 
(left) with mismatch evident when p=1 plane-wave modeling assumed (right).  Note 
signal contamination in noise training data results in PD reduction at high SNR’s.

PD vs. SNR for p=1 over 4 tones

PD

PD vs. SNR for p=4 over 4 tones

PD

SNR (dB) SNR (dB)
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Summary and Future Work 

• When the signal wavefront and noise field is uncertain, analytic PDF’s for the 
optimum adaptive matched-subspace detector  (MSD) can be rapidly computed as a 
function of SNR, signal wavefront rank, and number of training data snapshots.

• The analytic PDF of the adaptive MSD agrees with S5 HLA North data when an 
uncertain wavefront is assumed and the number of noise snapshots is large.

• Measured PD vs. SNR agrees with analytic predictions when the signal wavefront is 
assumed uncertain and the number of noise snapshots is large.

• Measured PD vs. SNR agrees with analytic predictions at moderate SNR’s when the 
signal wavefront is assumed uncertain for different number of training snapshots.

• At higher SNR’s, signal contamination of the noise training data can cause the 
measured PD to be notably less than analytical prediction when the training data 
limited.

• Future work will include validation of detection performance predictions with the 
HLA for assumed known signal wavefronts using MFP techniques.

• Evaluation of theory and prediction in the presence of interference and 
environmental uncertainty is planned using the SWELLEX-96 S59 event data.
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Incorporating Environmental Uncertainty Into Bayesian 
Sonar Detection Performance Prediction

interferer
interferer

Hydrophone
Array

Environmental uncertainty
•Uncertain channel parameters ψ

•Water depth, sound speed profile, etc
•Unknown signal source position Ss
•Unknown interference source position  Sk

Probability density functions p(ψ), p(Ss), and p(Sk) 
capture uncertainties in the environmental 
parameters 

Detection performance prediction
ROC (probability of detection vs

probability of false alarm)
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From Environmental Uncertainty
to Wave Front Uncertainty
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• Environmental uncertainty characterized by the probability density functions

• Uncertain signal wave front

• Ocean transfer function sampled at an N sensor array

• Signal Matrix: matrix of signal wave fronts due to environmental uncertainty

• Total signal-to-noise ratio at receivers
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From Wave Front Uncertainty to Bayesian Sonar 
Performance Prediction 

• Discrete likelihood ratio: Monte Carlo integration over uncertainty

• Detection performance: Monte Carlo over data to get  p(λ|H1) and  p(λ|H0)

•Disadvantage of Monte Carlo performance evaluation methods
• Lack of insight into fundamental parameters
• Computationally intensive

• Motivates developing analytical Bayesian sonar performance predictions
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Analytical Bayesian Sonar Performance Prediction 

Uncertain

Ocean

s: s(ψ,Ѕs)

R: rank of 
the signal 
matrix

Known

Ocean 

s: s(ψ,Ѕs)

f: f(ψ,Ѕk)

Multiple

Interferers

Multiple

Interferers

Diffuse noise

Diffuse noise

Single 
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ROC performanceDetector statisticProblem
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Courtesy of MPL/SIO

1572 m/s

1593m/s

216.5 m

1488 m/s
Density 1.76 g/cm3

Attenuation 0.2dB/KmHz

21 elements
VLA

Environmental ModelSWellEx-96 Event S5
5/10/96 23:15-5/11/96 00:30 GMT

Density 2.06 g/cm3

Attenuation 0.06dB/KmHz

1522 m/s

23.5m

1881m/s
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Source Track SWellEx-96 Event S5
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Used for replica field computation in detection problems
Estimated using Bartlett processor with nominal environmental 
parameters, 109Hz data 
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Detection Performance Prediction
An Example: SWellEx-96 Event S5 Environment

_ Matched
_ Bayesian
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SNR Estimation
Experimental Results (SWellEx-96 Event S5 )

Source Range of one particular track (m)
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+ SNR estimation  = channels*(||r1||2- ||r0||2)/ ||r0||2
+ ||r1||2 : r1 data energy in each frame
o ||r0||2 : r0 data energy in each frame

H1:  r1 = r109+(0.88-1) r99, H0:  r0= 0.88 r99
Frame: 21 channels x 900snapshots (5mins), updated per 100snapshots



19

Detection Performance Prediction
Experimental Results (SWellEx-96 Event S5 ) : Diffuse Noise
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Detection Performance Prediction 
Experimental Results (SWellEx-96 Event S5 ) :

Wave Front Uncertainty Due to Source Motion

+ Matched-ocean detector _ Analytical performance prediction

+ Bayesian detector _ Analytical performance prediction
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Summary and Future Work 

• Derived fast, analytical methods for characterizing the performance of optimum 
Bayesian and adaptive CFAR detectors.

• Derived signal covariance matrix rank as an efficient measure of ocean environmental 
uncertainty for Bayesian detection performance prediction.

• Evaluated expected detection loss due to ocean environmental uncertainty, as a function 
of SNR and signal covariance matrix rank, for vertical and horizontal arrays in 
representative environments.

• Evaluated expected detection loss due to limited noise covariance training data, in the 
presence of signal wavefront uncertainty, for adaptive CFAR detectors.

• Demonstrated good agreement between analytical detection performance predictions 
and the performance of optimal detectors, matched to the degree of environmental 
uncertainty, using SWELLEX-96 S5 event data.

• Future work will include the comparison of detection performance predictions in the 
presence of interference and environmental uncertainty using the SWELLEX-96 S59 
event data.

• Evaluation of comparative performance prediction accuracy using horizontal versus 
vertical array configurations in an uncertain environment are also planned.
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